Do Altruistic High School Students Flock Together?

Secondary Data Analysis of a Spanish Adolescent Network

Ryu Takahashi^{1, 2}, Yohsuke Ohtsubo¹

¹The University of Tokyo, ²Japan Society for the Promotion of Science

Introduction

Homophily: Birds of a Feather Flock Together

Key principle in social networks

- Tendency that similar people interact with each other
- Confirmed across many studies (e.g., McPherson et al., 2001)

Choice Homophily: A Mechanism Causing Homophily

Choice homophily (Kossinets & Watts, 2009)

- Preferring ties with similar others
- cf. Contagion friends becomes similar to each other
- E.g., Non-early birds are more likely to make friends with each other.
 Early birds are more likely to make friends with each other.
- However, some traits may not satisfy the assumption (e.g,. Ilmarinen et al., 20)

Kossinets, G., & Watts, D. J. (2009). Origins of homophily in an evolving social network. American Journal of Sociology, 115(2), 405–450. https://doi.org/10.1086/599247

Ilmarinen, V.-J., Lönngvist, J.-E., & Paunonen, S. (2016). Similarity-attraction effects in friendship formation: Honest platoon-mates prefer each other but dishonest do not. Personality and Individual Differences, 92, 153–158. https://doi.org/10.1016/j.paid.2015.12.040

Choice Homophily May Not Apply to ALTRUISM

- Non-altruists should like to form a tie with altruists
- tend to help others
- Everyone, including , benefits from ties with
- prefers to form ties with
- Contradictory to choice homophily
- \rightarrow Is there homophily of altruism? (e.g., Samu et al., 2025)

Research Questions

- 1. Is there homophily of altruism in friendship networks?
 - Are altruists connected with other altruists?
 Non-altruists connected with other non-altruists?
- 2. If the answer is YES, how strong is this tendency?
 - How does it compare to homophily based on gender and cognitive skill?

Dataset for Secondary Analysis

Dataset Contents

Social network of Spanish high school students

Population : 13 high schools

Nodes (): 3,395 students

● Edges (-----): **60,566** relationships

Information about High School Students

- Gender
- Cognitive skill (Cognitive Reflection Test Score: CRT)
 - E.g., A bat and a ball cost \$1.10 in total. The bat costs \$1.00 more than the ball. How much does the ball cost?
 - Correct answer: \$0.05
- Prosociality (prosocial vs. selfish distribution; 3 items)

Table 1. An example for prosociality measure

	You	Partner
Selfish	€20	€0
Prosocial	€10	€10

Information about Social Relationships

Original ratings:

- −2: very bad
- -1: bad
- NA: no relation
- +1: good
- +2: very good

Using Only Positive Relationships in This Study

Original ratings:

```
    -2: very bad
    -1: bad
    NA: no relation
    +1: good
    +2: very good
```

For this secondary analysis, we focused on positive ties:

- Positive tie (+1 or +2)
 → 1
- Other (not mentioned, negative) → 0

Results and Discussion

Analysis: Index of Homophily

Assortativity coefficient (Newman, 2003)

$$r = \frac{\sum_{xy} xy(e_{xy} - a_x b_y)}{\sigma_a \sigma_b}$$

It measures a tendency of students to connect with other students who are similar to them in terms of

- Gender
- Cognitive Skill (CRT)
- Prosociality

x, y: the value of source (target) nodes (i.e., each node's gender, CRT, and prosociality) e_{xy} : the fraction of all edges in the network that join together nodes with values x and y a_x, b_y : the fraction of edges that start at nodes with values x and y σ_a, σ_b : the standard deviations of end a_x and b_y

Permutation Test (Statistical Test)

Why?

Network data violate the independence assumption of standard statistical tests.

How?

- 1. Calculate the observed assortativity coefficient
- 2. Shuffle attributes of the nodes randomly 1000 times
- 3. Create **the null distribution** of the assortativity index based on the 1000 random networks
- 4. Compare the observed value to the 95th percentile in null distribution

Results: All Homophily Indices Were Significant

Assortativity Coefficient = Index of Homophily

Finding 1

Homophily was **significant for all attributes** (†95th percentile of null dist. < †All obs. coef.)

Results: All Homophily Indices Were Significant

Assortativity Coefficient = Index of Homophily

Finding 1

Homophily was **significant for all attributes** (†95th percentile of null dist. < †All obs. coef.)

Finding 2

The strengths of homophily varied across the three attributes

 Z-score: Gender > CRT > Prosociality (59.2 > 11.8 > 2.1, respectively)

Discussion

Conclusion

Homophily of altruism existed, but it was very small in its effect size.

Limitation

The dataset is a cross-sectional dataset (does not allow causality inferences)

Future directions

- Focus on bilateral relationships to investigate the nature of reciprocal relationships
- Use lab experiments to test causal mechanisms

Summary for Q&A

What?	Investigated homophily in altruism	
Why?	Unclear if a general preference for altruists leads to homophily	
How?	Calculated assortativity coefficients of gender, CRT and prosociality	
Results?	There was homophily of altruism	
	The effect was very weak	

Thank you for your attention!